Skip to content

Extractor

The Extractor class is the main interface for structured data extraction.

Main class for structured data extraction

Parameters:

Name Type Description Default
client Instructor

Instructor-patched Azure OpenAI client

required
model_name str

Name of the model to use

required
config Optional[Union[Dict, str, Path, ExtractionConfig]]

Configuration for extraction steps

None
max_threads int

Maximum number of concurrent threads

10
batch_size int

Size of batches for processing

100
max_retries int

Maximum number of retries for extraction

3
min_wait int

Minimum seconds to wait between retries

1
max_wait int

Maximum seconds to wait between retries

10
Source code in structx/extraction/extractor.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
class Extractor:
    """
    Main class for structured data extraction

    Args:
        client (Instructor): Instructor-patched Azure OpenAI client
        model_name (str): Name of the model to use
        config (Optional[Union[Dict, str, Path, ExtractionConfig]]): Configuration for extraction steps
        max_threads (int): Maximum number of concurrent threads
        batch_size (int): Size of batches for processing
        max_retries (int): Maximum number of retries for extraction
        min_wait (int): Minimum seconds to wait between retries
        max_wait (int): Maximum seconds to wait between retries
    """

    def __init__(
        self,
        client: Instructor,
        model_name: str,
        config: Optional[Union[Dict, str, Path, ExtractionConfig]] = None,
        max_threads: int = 10,
        batch_size: int = 100,
        max_retries: int = 3,
        min_wait: int = 1,
        max_wait: int = 10,
    ):
        """Initialize extractor"""
        self.client = client
        self.model_name = model_name
        self.max_threads = max_threads
        self.batch_size = batch_size
        self.max_retries = max_retries
        self.min_wait = min_wait
        self.max_wait = max_wait
        self.usage_lock = threading.Lock()
        self.usage = ExtractorUsage()

        if not config:
            self.config = ExtractionConfig()
        elif isinstance(config, (dict, str, Path)):
            self.config = ExtractionConfig(
                config=config if isinstance(config, dict) else None,
                config_path=config if isinstance(config, (str, Path)) else None,
            )
        elif isinstance(config, ExtractionConfig):
            self.config = config
        else:
            raise ConfigurationError("Invalid configuration type")

        logger.info(f"Initialized Extractor with configuration: {self.config.conf}")

    @handle_errors(error_message="LLM completion failed", error_type=ExtractionError)
    def _perform_llm_completion(
        self,
        messages: List[Dict[str, str]],
        response_model: Type[ResponseType],
        config: DictStrAny,
        step: ExtractionStep,
    ) -> ResponseType:
        """Perform LLM completion and track token usage"""
        # Use create_with_completion as shown in Instructor docs
        result, completion = self.client.chat.completions.create_with_completion(
            model=self.model_name,
            response_model=response_model,
            messages=messages,
            **config,
        )

        # Create usage object
        usage = StepUsage.from_completion(completion, step)

        # Add to usage tracking if available (thread-safe)
        if usage:
            with self.usage_lock:
                self.usage.add_step_usage(usage)
            logger.debug(f"Step {step.value}: {usage.total_tokens} tokens used")

        return result

    @handle_errors(error_message="Query analysis failed", error_type=ExtractionError)
    def _analyze_query(self, query: str, available_columns: List[str]) -> QueryAnalysis:
        """Analyze query to determine target column and extraction purpose"""
        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": query_analysis_system_prompt},
                {
                    "role": "user",
                    "content": query_analysis_template.substitute(
                        query=query, available_columns=", ".join(available_columns)
                    ),
                },
            ],
            response_model=QueryAnalysis,
            config=self.config.analysis,
            step=ExtractionStep.ANALYSIS,
        )

    @handle_errors(error_message="Query refinement failed", error_type=ExtractionError)
    def _refine_query(self, query: str) -> QueryRefinement:
        """Refine and expand query with structural requirements"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": query_refinement_system_prompt},
                {
                    "role": "user",
                    "content": query_refinement_template.substitute(query=query),
                },
            ],
            response_model=QueryRefinement,
            config=self.config.refinement,
            step=ExtractionStep.REFINEMENT,
        )

    @handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
    def _generate_extraction_schema(
        self, sample_text: str, refined_query: QueryRefinement, guide: ExtractionGuide
    ) -> ExtractionRequest:
        """Generate schema with enforced structure"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": schema_system_prompt},
                {
                    "role": "user",
                    "content": schema_template.substitute(
                        refined_query=refined_query.refined_query,
                        data_characteristics=refined_query.data_characteristics,
                        structural_requirements=refined_query.structural_requirements,
                        organization_principles=guide.organization_principles,
                        sample_text=sample_text,
                    ),
                },
            ],
            response_model=ExtractionRequest,
            config=self.config.refinement,
            step=ExtractionStep.SCHEMA_GENERATION,
        )

    @handle_errors(error_message="Guide generation failed", error_type=ExtractionError)
    def _generate_extraction_guide(
        self, refined_query: QueryRefinement
    ) -> ExtractionGuide:
        """Generate extraction guide based on refined query"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": guide_system_prompt},
                {
                    "role": "user",
                    "content": guide_template.substitute(
                        data_characteristics=refined_query.data_characteristics
                    ),
                },
            ],
            response_model=ExtractionGuide,
            config=self.config.refinement,
            step=ExtractionStep.GUIDE,
        )

    def _create_retry_decorator(self):
        """Create retry decorator with instance parameters"""
        return retry(
            stop=stop_after_attempt(self.max_retries),
            wait=wait_exponential(
                multiplier=self.min_wait, min=self.min_wait, max=self.max_wait
            ),
            retry=retry_if_exception_type(ExtractionError),
            before_sleep=before_sleep_log(logger, logging.DEBUG),
            after=after_log(logger, logging.DEBUG),
        )

    def _extract_without_retry(
        self,
        text: str,
        extraction_model: Type[BaseModel],
        refined_query: QueryRefinement,
        guide: ExtractionGuide,
    ) -> List[BaseModel]:
        """Extract structured data with usage tracking"""
        messages = [
            {"role": "system", "content": extraction_system_prompt},
            {
                "role": "user",
                "content": extraction_template.substitute(
                    query=refined_query.refined_query,
                    patterns=guide.structural_patterns,
                    rules=guide.relationship_rules,
                    text=text,
                ),
            },
        ]

        # Use create directly, not create_with_completion for extraction
        # This returns a properly structured response for iterable models

        class ResponseContainer(BaseModel):
            """Container for the response"""

            response: List[BaseModel]

        response = self.client.chat.completions.create_iterable(
            model=self.model_name,
            response_model=extraction_model,
            messages=messages,
            **self.config.extraction,
        )

        response = list(response)

        print("Response:", response)
        print(f"{dir(response[0])=}")

        # check if any of the items in the response has the _raw_response attribute
        # we neeed to check item by item because the response is an iterable
        if hasattr(response, "_raw_response"):
            completion = response._raw_response
            # Track usage
            usage = StepUsage.from_completion(completion, ExtractionStep.EXTRACTION)
            if usage:
                with self.usage_lock:
                    self.usage.add_step_usage(usage)

        # Return validated items
        return [extraction_model.model_validate(item) for item in response]

    def _extract_with_model(
        self,
        text: str,
        extraction_model: Type[BaseModel],
        refined_query: QueryRefinement,
        guide: ExtractionGuide,
    ) -> List[BaseModel]:
        """Extract data with enforced structure with retries and usage tracking"""
        # Create a container model to wrap the list items
        container_name = f"{extraction_model.__name__}Container"
        container_model = create_model(
            container_name,
            __base__=BaseModel,
            items=(
                List[extraction_model],
                Field(description=f"List of {extraction_model.__name__} items"),
            ),
        )

        # Apply retry decorator
        retry_decorator = self._create_retry_decorator()

        @retry_decorator
        def extract_with_retry():
            # Use _perform_llm_completion with the container model
            container = self._perform_llm_completion(
                messages=[
                    {"role": "system", "content": extraction_system_prompt},
                    {
                        "role": "user",
                        "content": extraction_template.substitute(
                            query=refined_query.refined_query,
                            patterns=guide.structural_patterns,
                            rules=guide.relationship_rules,
                            text=text,
                        ),
                    },
                ],
                response_model=container_model,
                config=self.config.extraction,
                step=ExtractionStep.EXTRACTION,
            )

            # Return just the items
            return container.items

        # Execute with retry
        return extract_with_retry()

    @handle_errors(
        error_message="Failed to initialize extraction", error_type=ExtractionError
    )
    def _initialize_extraction(
        self, df: pd.DataFrame, query: str, generate_model: bool = True
    ) -> Tuple[
        QueryAnalysis,
        QueryRefinement,
        ExtractionGuide,
        Optional[Type[BaseModel]],
    ]:
        """Initialize the extraction process by analyzing query and generating models if needed"""
        # Analyze query
        query_analysis = self._analyze_query(
            query, available_columns=df.columns.tolist()
        )
        logger.info(f"Target Column: {query_analysis.target_column}")
        logger.info(f"Extraction Purpose: {query_analysis.extraction_purpose}")

        # Refine query
        refined_query = self._refine_query(query)
        logger.info(f"Refined Query: {refined_query.refined_query}")

        # Get sample text and generate guide
        sample_text = df[query_analysis.target_column].iloc[0]
        guide = self._generate_extraction_guide(refined_query)

        if not generate_model:
            return query_analysis, refined_query, guide

        # Generate model
        schema_request = self._generate_extraction_schema(
            sample_text, refined_query, guide
        )
        ExtractionModel = ModelGenerator.from_extraction_request(schema_request)
        logger.info("Generated Model Schema:")
        logger.info(json.dumps(ExtractionModel.model_json_schema(), indent=2))

        return query_analysis, refined_query, guide, ExtractionModel

    def _initialize_results(
        self, df: pd.DataFrame, extraction_model: Type[BaseModel]
    ) -> Tuple[pd.DataFrame, List[Any], List[Dict]]:
        """Initialize result containers"""
        result_df = df.copy()
        result_list = []
        failed_rows = []

        # Initialize extraction columns
        for field_name in extraction_model.model_fields:
            result_df[field_name] = None
        result_df["extraction_status"] = None

        return result_df, result_list, failed_rows

    def _create_extraction_worker(
        self,
        extraction_model: Type[BaseModel],
        refined_query: QueryRefinement,
        guide: ExtractionGuide,
        result_df: pd.DataFrame,
        result_list: List[Any],
        failed_rows: List[Dict],
        return_df: bool,
        expand_nested: bool,
    ):
        """Create a worker function for threaded extraction"""

        def extract_worker(
            row_text: str,
            row_idx: int,
            semaphore: threading.Semaphore,
            pbar: tqdm,
        ):
            with semaphore:
                try:
                    items = self._extract_with_model(
                        text=row_text,
                        extraction_model=extraction_model,
                        refined_query=refined_query,
                        guide=guide,
                    )

                    if return_df:
                        self._update_dataframe(result_df, items, row_idx, expand_nested)
                    else:
                        result_list.extend(items)

                except Exception as e:
                    self._handle_extraction_error(
                        result_df, failed_rows, row_idx, row_text, e
                    )
                finally:
                    pbar.update(1)

        return extract_worker

    def _update_dataframe(
        self,
        result_df: pd.DataFrame,
        items: List[BaseModel],
        row_idx: int,
        expand_nested: bool,
    ) -> None:
        """Update DataFrame with extracted items"""
        for i, item in enumerate(items):
            # Flatten if needed
            item_data = (
                flatten_extracted_data(item.model_dump())
                if expand_nested
                else item.model_dump()
            )

            # For multiple items, append index to field names
            if i > 0:
                item_data = {f"{k}_{i}": v for k, v in item_data.items()}

            # Update result dataframe
            for field_name, value in item_data.items():
                result_df.at[row_idx, field_name] = value

        result_df.at[row_idx, "extraction_status"] = "Success"

    def _handle_extraction_error(
        self,
        result_df: pd.DataFrame,
        failed_rows: List[Dict],
        row_idx: int,
        row_text: str,
        error: Exception,
    ) -> None:
        """Handle and log extraction errors"""
        failed_rows.append(
            {
                "index": row_idx,
                "text": row_text,
                "error": str(error),
                "timestamp": datetime.now().isoformat(),
            }
        )
        result_df.at[row_idx, "extraction_status"] = f"Failed: {str(error)}"

    def _process_batch(
        self,
        batch: pd.DataFrame,
        worker_fn: Callable,
        target_column: str,
    ) -> None:
        """Process a batch of data using threads"""
        semaphore = threading.Semaphore(self.max_threads)
        threads = []

        with tqdm(total=len(batch), desc=f"Processing batch", unit="row") as pbar:
            # Create and start threads for batch
            for idx, row in batch.iterrows():
                thread = threading.Thread(
                    target=worker_fn,
                    args=(row[target_column], idx, semaphore, pbar),
                )
                thread.start()
                threads.append(thread)

            # Wait for batch threads to complete
            for thread in threads:
                thread.join()

    def _log_extraction_stats(self, total_rows: int, failed_rows: List[Dict]) -> None:
        """Log extraction statistics"""
        success_count = total_rows - len(failed_rows)
        logger.info("\nExtraction Statistics:")
        logger.info(f"Total rows: {total_rows}")
        logger.info(
            f"Successfully processed: {success_count} "
            f"({success_count/total_rows*100:.2f}%)"
        )
        logger.info(
            f"Failed: {len(failed_rows)} " f"({len(failed_rows)/total_rows*100:.2f}%)"
        )

    @handle_errors(error_message="Data processing failed", error_type=ExtractionError)
    def _process_data(
        self,
        df: pd.DataFrame,
        query: str,
        return_df: bool,
        expand_nested: bool = False,
        extraction_model: Optional[Type[BaseModel]] = None,
    ) -> ExtractionResult:
        """Process DataFrame with extraction"""
        # Reset usage tracking
        self.usage = ExtractorUsage()

        # Initialize extraction
        if extraction_model:
            query_analysis, refined_query, guide = self._initialize_extraction(
                df, query, generate_model=False
            )
            ExtractionModel = extraction_model
        else:
            query_analysis, refined_query, guide, ExtractionModel = (
                self._initialize_extraction(df, query, generate_model=True)
            )

        # Initialize results
        result_df, result_list, failed_rows = self._initialize_results(
            df, ExtractionModel
        )

        # Create worker function
        worker_fn = self._create_extraction_worker(
            extraction_model=ExtractionModel,
            refined_query=refined_query,
            guide=guide,
            result_df=result_df,
            result_list=result_list,
            failed_rows=failed_rows,
            return_df=return_df,
            expand_nested=expand_nested,
        )

        # Process in batches
        for batch_start in range(0, len(df), self.batch_size):
            batch_end = min(batch_start + self.batch_size, len(df))
            batch = df.iloc[batch_start:batch_end]
            self._process_batch(batch, worker_fn, query_analysis.target_column)

        # Log statistics
        self._log_extraction_stats(len(df), failed_rows)

        # Create a deep copy of usage for the result
        result_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Return results
        return ExtractionResult(
            data=result_df if return_df else result_list,
            failed=pd.DataFrame(failed_rows),
            model=ExtractionModel,
            usage=result_usage,
        )

    def _prepare_data(
        self, data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]], **kwargs: Any
    ) -> pd.DataFrame:
        """
        Convert input data to DataFrame

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            **kwargs: Additional options for file reading

        Returns:
            DataFrame with data
        """
        if isinstance(data, pd.DataFrame):
            df = data
        elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
            df = pd.DataFrame(data)
        elif isinstance(data, (str, Path)) and Path(str(data)).exists():
            df = FileReader.read_file(data, **kwargs)
        elif isinstance(data, str):
            # Raw text
            chunk_size = kwargs.get("chunk_size", 1000)
            overlap = kwargs.get("overlap", 100)
            chunks = []
            for i in range(0, len(data), chunk_size - overlap):
                chunks.append(data[i : i + chunk_size])

            df = pd.DataFrame(
                {"text": chunks, "chunk_id": range(len(chunks)), "source": "raw_text"}
            )
        else:
            raise ValueError(f"Unsupported data type: {type(data)}")

        # Ensure text column exists
        if "text" not in df.columns and len(df.columns) == 1:
            df["text"] = df[df.columns[0]]

        return df

    async def _run_async(self, func: Callable, *args: Any, **kwargs: Any) -> Any:
        """
        Run a function asynchronously in a thread pool

        Args:
            func: Function to run
            *args: Positional arguments for the function
            **kwargs: Keyword arguments for the function

        Returns:
            Result of the function
        """
        # Use functools.partial to create a callable with all arguments
        from functools import partial

        wrapped_func = partial(func, *args, **kwargs)

        try:
            # Try to get the running loop
            loop = asyncio.get_running_loop()
        except RuntimeError:
            # No running loop, create a new one
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)

            # Since we created a new loop, we need to run and close it
            try:
                return await loop.run_in_executor(None, wrapped_func)
            finally:
                loop.close()
        else:
            # We got an existing loop, just use it
            return await loop.run_in_executor(None, wrapped_func)

    @handle_errors(error_message="Extraction failed", error_type=ExtractionError)
    def extract(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        query: str,
        model: Optional[Type[BaseModel]] = None,
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> ExtractionResult:
        """
        Extract structured data from text

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            query: Natural language query
            model: Optional pre-generated Pydantic model class (if None, a model will be generated)
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading
                - chunk_size: Size of text chunks (for unstructured text)
                - overlap: Overlap between chunks (for unstructured text)
                - encoding: Text encoding (for unstructured text)

        Returns:
            Extraction result with extracted data, failed rows, and model (if requested)
        """
        df = self._prepare_data(data, **kwargs)
        return self._process_data(df, query, return_df, expand_nested, model)

    async def extract_async(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        query: str,
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> ExtractionResult:
        """
        Asynchronous version of `extract`.

        Extract structured data from text

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            query: Natural language query
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading

        Returns:
            ExtractionResult containing extracted data, failed rows, and the model
        """

    @handle_errors(error_message="Batch extraction failed", error_type=ExtractionError)
    def extract_queries(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        queries: List[str],
        return_df: bool = True,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> Dict[str, ExtractionResult]:
        """
        Process multiple queries on the same data

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            queries: List of queries to process
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading
                - chunk_size: Size of text chunks (for unstructured text)
                - overlap: Overlap between chunks (for unstructured text)
                - encoding: Text encoding (for unstructured text)

        Returns:
            Dictionary mapping queries to their results (extracted data and failed extractions)
        """
        results = {}

        for query in queries:
            logger.info(f"\nProcessing query: {query}")
            result = self.extract(
                data=data,
                query=query,
                return_df=return_df,
                expand_nested=expand_nested,
                **kwargs,
            )
            results[query] = result

        return results

    async def extract_queries_async(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        queries: List[str],
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> Dict[str, ExtractionResult]:
        """
        Asynchronous version of `extract_queries`.

        Extract structured data using multiple queries

        Args:
            data: Input data
            queries: List of queries
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options

        Returns:
            Dictionary mapping queries to ExtractionResult objects
        """

    @handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
    def get_schema(self, query: str, sample_text: str) -> Type[BaseModel]:
        """
        Get extraction model without performing extraction

        Args:
            query: Natural language query
            sample_text: Sample text for context

        Returns:
            Pydantic model for extraction with `.usage` attribute for token tracking
        """
        # Refine query
        refined_query = self._refine_query(query)

        guide = self._generate_extraction_guide(refined_query)

        # Generate schema
        schema_request = self._generate_extraction_schema(
            sample_text, refined_query, guide
        )

        # Create model
        ExtractionModel = ModelGenerator.from_extraction_request(schema_request)

        # Create a deep copy of usage for the model
        model_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Add usage to model
        ExtractionModel.usage = model_usage

        return ExtractionModel

    async def get_schema_async(self, query: str, sample_text: str) -> Type[BaseModel]:
        """
        Asynchronous version of `get_schema`.

        Get the dynamically generated model for extraction

        Args:
            query: Natural language query
            sample_text: Sample text for context

        Returns:
            Dynamically generated Pydantic model class
        """

    def refine_data_model(
        self,
        model: Type[BaseModel],
        instructions: str,
        model_name: Optional[str] = None,
    ) -> Type[BaseModel]:
        """
        Refine an existing data model based on natural language instructions

        Args:
            model: Existing Pydantic model to refine
            instructions: Natural language instructions for refinement
            model_name: Optional name for the refined model (defaults to original name with 'Refined' prefix)

        Returns:
            A new refined Pydantic model with `.usage` attribute for token tracking
        """

        # Default model name if not provided
        if model_name is None:
            model_name = f"Refined{model.__name__}"

        # Get the schema of the existing model
        model_schema = model.model_json_schema()
        model_schema_str = json.dumps(model_schema, indent=2)

        # Generate schema for the refined model directly
        extraction_request = self._perform_llm_completion(
            response_model=ExtractionRequest,
            messages=[
                {
                    "role": "system",
                    "content": """You are a data model refinement specialist.
                Analyze the existing model and the refinement instructions to create
                a new model that incorporates the requested changes.""",
                },
                {
                    "role": "user",
                    "content": f"""
                Refine the following data model according to these instructions:

                EXISTING MODEL SCHEMA:
                ```json
                {model_schema_str}
                ```
            REFINEMENT INSTRUCTIONS:
            {instructions}

            Create a new model schema that:
            1. Keeps fields from the original model that shouldn't change
            2. Modifies fields as specified in the instructions
            3. Adds new fields as specified in the instructions
            4. Removes fields as specified in the instructions

            Important: Use Pydantic v2 syntax:
            - Use `pattern` instead of `regex` for string patterns
            - Use `model_config` instead of `Config` class
            - Use `Field` with validation parameters instead of validators where possible

            Include a clear description of the model and each field.
        """,
                },
            ],
            config=self.config.refinement,
            step=ExtractionStep.SCHEMA_GENERATION,
        )

        # Set the model name if specified
        if model_name:
            extraction_request.model_name = model_name

        # Sanitize regex patterns to prevent validation errors
        sanitized_request = sanitize_regex_patterns(extraction_request)

        # Convert from v1 to v2 if needed and generate model
        converted_request = convert_pydantic_v1_to_v2(sanitized_request)
        refined_model = ModelGenerator.from_extraction_request(converted_request)

        # Create a deep copy of usage for the model
        model_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Add usage to model
        refined_model.usage = model_usage

        return refined_model

    @classmethod
    def from_litellm(
        cls,
        model: str,
        api_key: Optional[str] = None,
        config: Optional[Union[Dict, str]] = None,
        max_threads: int = 10,
        batch_size: int = 100,
        max_retries: int = 3,
        min_wait: int = 1,
        max_wait: int = 10,
        **litellm_kwargs: Any,
    ) -> "Extractor":
        """
        Create Extractor instance using litellm

        Args:
            model: Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")
            api_key: API key for the model provider
            config: Extraction configuration
            max_threads: Maximum number of concurrent threads
            batch_size: Size of processing batches
            max_retries: Maximum number of retries for extraction
            min_wait: Minimum seconds to wait between retries
            max_wait: Maximum seconds to wait between retries
            **litellm_kwargs: Additional kwargs for litellm (e.g., api_base, organization)
        """
        import instructor
        import litellm
        from litellm import completion

        # Set up litellm
        if api_key:
            litellm.api_key = api_key

        # Set additional litellm configs
        for key, value in litellm_kwargs.items():
            setattr(litellm, key, value)

        # Create patched client
        client = instructor.from_litellm(completion)

        return cls(
            client=client,
            model_name=model,
            config=config,
            max_threads=max_threads,
            batch_size=batch_size,
            max_retries=max_retries,
            min_wait=min_wait,
            max_wait=max_wait,
        )

extract(data, query, model=None, return_df=False, expand_nested=False, **kwargs)

Extract structured data from text

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
query str

Natural language query

required
model Optional[Type[BaseModel]]

Optional pre-generated Pydantic model class (if None, a model will be generated)

None
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading - chunk_size: Size of text chunks (for unstructured text) - overlap: Overlap between chunks (for unstructured text) - encoding: Text encoding (for unstructured text)

{}

Returns:

Type Description
ExtractionResult

Extraction result with extracted data, failed rows, and model (if requested)

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Extraction failed", error_type=ExtractionError)
def extract(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    query: str,
    model: Optional[Type[BaseModel]] = None,
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> ExtractionResult:
    """
    Extract structured data from text

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        query: Natural language query
        model: Optional pre-generated Pydantic model class (if None, a model will be generated)
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading
            - chunk_size: Size of text chunks (for unstructured text)
            - overlap: Overlap between chunks (for unstructured text)
            - encoding: Text encoding (for unstructured text)

    Returns:
        Extraction result with extracted data, failed rows, and model (if requested)
    """
    df = self._prepare_data(data, **kwargs)
    return self._process_data(df, query, return_df, expand_nested, model)

extract_async(data, query, return_df=False, expand_nested=False, **kwargs) async

Asynchronous version of extract.

Extract structured data from text

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
query str

Natural language query

required
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading

{}

Returns:

Type Description
ExtractionResult

ExtractionResult containing extracted data, failed rows, and the model

Source code in structx/extraction/extractor.py
async def extract_async(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    query: str,
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> ExtractionResult:
    """
    Asynchronous version of `extract`.

    Extract structured data from text

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        query: Natural language query
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading

    Returns:
        ExtractionResult containing extracted data, failed rows, and the model
    """

extract_queries(data, queries, return_df=True, expand_nested=False, **kwargs)

Process multiple queries on the same data

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
queries List[str]

List of queries to process

required
return_df bool

Whether to return DataFrame

True
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading - chunk_size: Size of text chunks (for unstructured text) - overlap: Overlap between chunks (for unstructured text) - encoding: Text encoding (for unstructured text)

{}

Returns:

Type Description
Dict[str, ExtractionResult]

Dictionary mapping queries to their results (extracted data and failed extractions)

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Batch extraction failed", error_type=ExtractionError)
def extract_queries(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    queries: List[str],
    return_df: bool = True,
    expand_nested: bool = False,
    **kwargs: Any,
) -> Dict[str, ExtractionResult]:
    """
    Process multiple queries on the same data

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        queries: List of queries to process
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading
            - chunk_size: Size of text chunks (for unstructured text)
            - overlap: Overlap between chunks (for unstructured text)
            - encoding: Text encoding (for unstructured text)

    Returns:
        Dictionary mapping queries to their results (extracted data and failed extractions)
    """
    results = {}

    for query in queries:
        logger.info(f"\nProcessing query: {query}")
        result = self.extract(
            data=data,
            query=query,
            return_df=return_df,
            expand_nested=expand_nested,
            **kwargs,
        )
        results[query] = result

    return results

extract_queries_async(data, queries, return_df=False, expand_nested=False, **kwargs) async

Asynchronous version of extract_queries.

Extract structured data using multiple queries

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data

required
queries List[str]

List of queries

required
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options

{}

Returns:

Type Description
Dict[str, ExtractionResult]

Dictionary mapping queries to ExtractionResult objects

Source code in structx/extraction/extractor.py
async def extract_queries_async(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    queries: List[str],
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> Dict[str, ExtractionResult]:
    """
    Asynchronous version of `extract_queries`.

    Extract structured data using multiple queries

    Args:
        data: Input data
        queries: List of queries
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options

    Returns:
        Dictionary mapping queries to ExtractionResult objects
    """

from_litellm(model, api_key=None, config=None, max_threads=10, batch_size=100, max_retries=3, min_wait=1, max_wait=10, **litellm_kwargs) classmethod

Create Extractor instance using litellm

Parameters:

Name Type Description Default
model str

Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")

required
api_key Optional[str]

API key for the model provider

None
config Optional[Union[Dict, str]]

Extraction configuration

None
max_threads int

Maximum number of concurrent threads

10
batch_size int

Size of processing batches

100
max_retries int

Maximum number of retries for extraction

3
min_wait int

Minimum seconds to wait between retries

1
max_wait int

Maximum seconds to wait between retries

10
**litellm_kwargs Any

Additional kwargs for litellm (e.g., api_base, organization)

{}
Source code in structx/extraction/extractor.py
@classmethod
def from_litellm(
    cls,
    model: str,
    api_key: Optional[str] = None,
    config: Optional[Union[Dict, str]] = None,
    max_threads: int = 10,
    batch_size: int = 100,
    max_retries: int = 3,
    min_wait: int = 1,
    max_wait: int = 10,
    **litellm_kwargs: Any,
) -> "Extractor":
    """
    Create Extractor instance using litellm

    Args:
        model: Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")
        api_key: API key for the model provider
        config: Extraction configuration
        max_threads: Maximum number of concurrent threads
        batch_size: Size of processing batches
        max_retries: Maximum number of retries for extraction
        min_wait: Minimum seconds to wait between retries
        max_wait: Maximum seconds to wait between retries
        **litellm_kwargs: Additional kwargs for litellm (e.g., api_base, organization)
    """
    import instructor
    import litellm
    from litellm import completion

    # Set up litellm
    if api_key:
        litellm.api_key = api_key

    # Set additional litellm configs
    for key, value in litellm_kwargs.items():
        setattr(litellm, key, value)

    # Create patched client
    client = instructor.from_litellm(completion)

    return cls(
        client=client,
        model_name=model,
        config=config,
        max_threads=max_threads,
        batch_size=batch_size,
        max_retries=max_retries,
        min_wait=min_wait,
        max_wait=max_wait,
    )

get_schema(query, sample_text)

Get extraction model without performing extraction

Parameters:

Name Type Description Default
query str

Natural language query

required
sample_text str

Sample text for context

required

Returns:

Type Description
Type[BaseModel]

Pydantic model for extraction with .usage attribute for token tracking

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
def get_schema(self, query: str, sample_text: str) -> Type[BaseModel]:
    """
    Get extraction model without performing extraction

    Args:
        query: Natural language query
        sample_text: Sample text for context

    Returns:
        Pydantic model for extraction with `.usage` attribute for token tracking
    """
    # Refine query
    refined_query = self._refine_query(query)

    guide = self._generate_extraction_guide(refined_query)

    # Generate schema
    schema_request = self._generate_extraction_schema(
        sample_text, refined_query, guide
    )

    # Create model
    ExtractionModel = ModelGenerator.from_extraction_request(schema_request)

    # Create a deep copy of usage for the model
    model_usage = copy.deepcopy(self.usage) if self.usage else None

    # Reset the extractor's usage for the next operation
    self.usage = ExtractorUsage()

    # Add usage to model
    ExtractionModel.usage = model_usage

    return ExtractionModel

get_schema_async(query, sample_text) async

Asynchronous version of get_schema.

Get the dynamically generated model for extraction

Parameters:

Name Type Description Default
query str

Natural language query

required
sample_text str

Sample text for context

required

Returns:

Type Description
Type[BaseModel]

Dynamically generated Pydantic model class

Source code in structx/extraction/extractor.py
async def get_schema_async(self, query: str, sample_text: str) -> Type[BaseModel]:
    """
    Asynchronous version of `get_schema`.

    Get the dynamically generated model for extraction

    Args:
        query: Natural language query
        sample_text: Sample text for context

    Returns:
        Dynamically generated Pydantic model class
    """

refine_data_model(model, instructions, model_name=None)

Refine an existing data model based on natural language instructions

Parameters:

Name Type Description Default
model Type[BaseModel]

Existing Pydantic model to refine

required
instructions str

Natural language instructions for refinement

required
model_name Optional[str]

Optional name for the refined model (defaults to original name with 'Refined' prefix)

None

Returns:

Type Description
Type[BaseModel]

A new refined Pydantic model with .usage attribute for token tracking

Source code in structx/extraction/extractor.py
def refine_data_model(
    self,
    model: Type[BaseModel],
    instructions: str,
    model_name: Optional[str] = None,
) -> Type[BaseModel]:
    """
    Refine an existing data model based on natural language instructions

    Args:
        model: Existing Pydantic model to refine
        instructions: Natural language instructions for refinement
        model_name: Optional name for the refined model (defaults to original name with 'Refined' prefix)

    Returns:
        A new refined Pydantic model with `.usage` attribute for token tracking
    """

    # Default model name if not provided
    if model_name is None:
        model_name = f"Refined{model.__name__}"

    # Get the schema of the existing model
    model_schema = model.model_json_schema()
    model_schema_str = json.dumps(model_schema, indent=2)

    # Generate schema for the refined model directly
    extraction_request = self._perform_llm_completion(
        response_model=ExtractionRequest,
        messages=[
            {
                "role": "system",
                "content": """You are a data model refinement specialist.
            Analyze the existing model and the refinement instructions to create
            a new model that incorporates the requested changes.""",
            },
            {
                "role": "user",
                "content": f"""
            Refine the following data model according to these instructions:

            EXISTING MODEL SCHEMA:
            ```json
            {model_schema_str}
            ```
        REFINEMENT INSTRUCTIONS:
        {instructions}

        Create a new model schema that:
        1. Keeps fields from the original model that shouldn't change
        2. Modifies fields as specified in the instructions
        3. Adds new fields as specified in the instructions
        4. Removes fields as specified in the instructions

        Important: Use Pydantic v2 syntax:
        - Use `pattern` instead of `regex` for string patterns
        - Use `model_config` instead of `Config` class
        - Use `Field` with validation parameters instead of validators where possible

        Include a clear description of the model and each field.
    """,
            },
        ],
        config=self.config.refinement,
        step=ExtractionStep.SCHEMA_GENERATION,
    )

    # Set the model name if specified
    if model_name:
        extraction_request.model_name = model_name

    # Sanitize regex patterns to prevent validation errors
    sanitized_request = sanitize_regex_patterns(extraction_request)

    # Convert from v1 to v2 if needed and generate model
    converted_request = convert_pydantic_v1_to_v2(sanitized_request)
    refined_model = ModelGenerator.from_extraction_request(converted_request)

    # Create a deep copy of usage for the model
    model_usage = copy.deepcopy(self.usage) if self.usage else None

    # Reset the extractor's usage for the next operation
    self.usage = ExtractorUsage()

    # Add usage to model
    refined_model.usage = model_usage

    return refined_model