Extractor¶
The Extractor
class is the main interface for structured data extraction.
API Requirements¶
All methods require keyword arguments. The *
in method signatures indicates that all parameters after it must be passed as keyword arguments:
# ✅ Correct usage
result = extractor.extract(data="file.pdf", query="extract information")
result = extractor.extract_queries(data="file.pdf", queries=["query1", "query2"])
model = extractor.get_schema(data="file.pdf", query="extract information")
refined = extractor.refine_data_model(model=ExistingModel, refinement_instructions="add field")
# ❌ Incorrect usage - will raise TypeError
result = extractor.extract("file.pdf", "extract information")
result = extractor.extract_queries("file.pdf", ["query1", "query2"])
Architecture Overview¶
View Architecture Diagram
graph TB
subgraph "User Interface"
A[Extractor Class]
A1[extract]
A2[extract_queries]
A3[extract_async]
A4[refine_data_model]
end
subgraph "Core Processing Modules"
B[LLM Core]
C[Model Utils]
D[Data Content Processor]
E[Model Operations]
F[Extraction Engine]
end
subgraph "File Processing Pipeline"
G[File Reader]
H[Format Detection]
I[Document Conversion]
J[PDF Generation]
K[Multimodal Processing]
end
subgraph "LLM Integration"
L[Instructor Client]
M[LiteLLM Support]
N[Provider Abstraction]
O[Token Tracking]
end
subgraph "Output Management"
P[Result Manager]
Q[Type Safety]
R[Error Handling]
S[Usage Statistics]
end
A --> A1
A --> A2
A --> A3
A --> A4
A1 --> B
A1 --> G
B --> L
G --> H
H --> I
I --> J
J --> K
B --> C
B --> D
C --> E
E --> F
F --> P
L --> M
M --> N
N --> O
P --> Q
P --> R
P --> S
Main class for structured data extraction - now acts as an orchestrator.
This class coordinates the various specialized components to perform structured data extraction from different types of sources.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client
|
Instructor
|
Instructor-patched client |
required |
model_name
|
str
|
Name of the model to use |
required |
config
|
Optional[Union[Dict, str, Path, ExtractionConfig]]
|
Configuration for extraction steps |
None
|
max_threads
|
int
|
Maximum number of concurrent threads |
10
|
batch_size
|
int
|
Size of batches for processing |
100
|
max_retries
|
int
|
Maximum number of retries for extraction |
3
|
min_wait
|
int
|
Minimum seconds to wait between retries |
1
|
max_wait
|
int
|
Maximum seconds to wait between retries |
10
|
Source code in structx/extraction/extractor.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
extract(*, data, query, model=None, return_df=False, expand_nested=False, **kwargs)
¶
Extract structured data from text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data (file path, DataFrame, list of dicts, or raw text) |
required |
query
|
str
|
Natural language query |
required |
model
|
Optional[Type[BaseModel]]
|
Optional pre-generated Pydantic model class (if None, a model will be generated) |
None
|
return_df
|
bool
|
Whether to return DataFrame |
False
|
expand_nested
|
bool
|
Whether to flatten nested structures |
False
|
**kwargs
|
Any
|
Additional options for file reading |
{}
|
Returns:
Type | Description |
---|---|
ExtractionResult
|
Extraction result with extracted data, failed rows, and model (if requested) |
Source code in structx/extraction/extractor.py
extract_async(*, data, query, return_df=False, expand_nested=False, **kwargs)
async
¶
Asynchronous version of extract
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data (file path, DataFrame, list of dicts, or raw text) |
required |
query
|
str
|
Natural language query |
required |
return_df
|
bool
|
Whether to return DataFrame |
False
|
expand_nested
|
bool
|
Whether to flatten nested structures |
False
|
**kwargs
|
Any
|
Additional options for file reading |
{}
|
Returns:
Type | Description |
---|---|
ExtractionResult
|
ExtractionResult containing extracted data, failed rows, and the model |
Source code in structx/extraction/extractor.py
extract_queries(*, data, queries, return_df=True, expand_nested=False, **kwargs)
¶
Process multiple queries on the same data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data (file path, DataFrame, list of dicts, or raw text) |
required |
queries
|
List[str]
|
List of queries to process |
required |
return_df
|
bool
|
Whether to return DataFrame |
True
|
expand_nested
|
bool
|
Whether to flatten nested structures |
False
|
**kwargs
|
Any
|
Additional options for file reading |
{}
|
Returns:
Type | Description |
---|---|
Dict[str, ExtractionResult]
|
Dictionary mapping queries to their results (extracted data and failed extractions) |
Source code in structx/extraction/extractor.py
extract_queries_async(*, data, queries, return_df=False, expand_nested=False, **kwargs)
async
¶
Asynchronous version of extract_queries
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data |
required |
queries
|
List[str]
|
List of queries |
required |
return_df
|
bool
|
Whether to return DataFrame |
False
|
expand_nested
|
bool
|
Whether to flatten nested structures |
False
|
**kwargs
|
Any
|
Additional options |
{}
|
Returns:
Type | Description |
---|---|
Dict[str, ExtractionResult]
|
Dictionary mapping queries to ExtractionResult objects |
Source code in structx/extraction/extractor.py
from_litellm(*, model, api_key=None, config=None, max_threads=10, batch_size=100, max_retries=3, min_wait=1, max_wait=10, **litellm_kwargs)
classmethod
¶
Create Extractor instance using litellm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str
|
Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4") |
required |
api_key
|
Optional[str]
|
API key for the model provider |
None
|
config
|
Optional[Union[Dict, str]]
|
Extraction configuration |
None
|
max_threads
|
int
|
Maximum number of concurrent threads |
10
|
batch_size
|
int
|
Size of processing batches |
100
|
max_retries
|
int
|
Maximum number of retries for extraction |
3
|
min_wait
|
int
|
Minimum seconds to wait between retries |
1
|
max_wait
|
int
|
Maximum seconds to wait between retries |
10
|
**litellm_kwargs
|
Any
|
Additional kwargs for litellm (e.g., api_base, organization) |
{}
|
Source code in structx/extraction/extractor.py
get_schema(*, data, query, **kwargs)
¶
Get extraction model without performing extraction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Natural language query |
required |
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data (file path, DataFrame, list of dicts, or raw text) |
required |
**kwargs
|
Any
|
Additional options for file reading |
{}
|
Returns:
Type | Description |
---|---|
Type[BaseModel]
|
Pydantic model for extraction with |
Source code in structx/extraction/extractor.py
get_schema_async(*, data, query, **kwargs)
async
¶
Asynchronous version of get_schema
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Natural language query |
required |
data
|
Union[str, Path, DataFrame, List[Dict[str, str]]]
|
Input data (file path, DataFrame, list of dicts, or raw text) |
required |
**kwargs
|
Any
|
Additional options for file reading |
{}
|
Returns:
Type | Description |
---|---|
Type[BaseModel]
|
Dynamically generated Pydantic model class |
Source code in structx/extraction/extractor.py
refine_data_model(*, model, refinement_instructions, model_name=None)
¶
Refine an existing data model based on natural language instructions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Type[BaseModel]
|
Existing Pydantic model to refine |
required |
refinement_instructions
|
str
|
Natural language instructions for refinement |
required |
model_name
|
Optional[str]
|
Optional name for the refined model (defaults to original name with 'Refined' prefix) |
None
|
Returns:
Type | Description |
---|---|
Type[BaseModel]
|
A new refined Pydantic model with |