Skip to content

Extractor

The Extractor class is the main interface for structured data extraction.

Main class for structured data extraction

Parameters:

Name Type Description Default
client Instructor

Instructor-patched Azure OpenAI client

required
model_name str

Name of the model to use

required
config Optional[Union[Dict, str, Path, ExtractionConfig]]

Configuration for extraction steps

None
max_threads int

Maximum number of concurrent threads

10
batch_size int

Size of batches for processing

100
max_retries int

Maximum number of retries for extraction

3
min_wait int

Minimum seconds to wait between retries

1
max_wait int

Maximum seconds to wait between retries

10
Source code in structx/extraction/extractor.py
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
class Extractor:
    """
    Main class for structured data extraction

    Args:
        client (Instructor): Instructor-patched Azure OpenAI client
        model_name (str): Name of the model to use
        config (Optional[Union[Dict, str, Path, ExtractionConfig]]): Configuration for extraction steps
        max_threads (int): Maximum number of concurrent threads
        batch_size (int): Size of batches for processing
        max_retries (int): Maximum number of retries for extraction
        min_wait (int): Minimum seconds to wait between retries
        max_wait (int): Maximum seconds to wait between retries
    """

    def __init__(
        self,
        client: Instructor,
        model_name: str,
        config: Optional[Union[Dict, str, Path, ExtractionConfig]] = None,
        max_threads: int = 10,
        batch_size: int = 100,
        max_retries: int = 3,
        min_wait: int = 1,
        max_wait: int = 10,
    ):
        """Initialize extractor"""
        self.client = client
        self.model_name = model_name
        self.max_threads = max_threads
        self.batch_size = batch_size
        self.max_retries = max_retries
        self.min_wait = min_wait
        self.max_wait = max_wait
        self.usage_lock = threading.Lock()
        self.usage = ExtractorUsage()

        if not config:
            self.config = ExtractionConfig()
        elif isinstance(config, (dict, str, Path)):
            self.config = ExtractionConfig(
                config=config if isinstance(config, dict) else None,
                config_path=config if isinstance(config, (str, Path)) else None,
            )
        elif isinstance(config, ExtractionConfig):
            self.config = config
        else:
            raise ConfigurationError("Invalid configuration type")

        logger.info(f"Initialized Extractor with configuration: {self.config.conf}")

    @handle_errors(error_message="LLM completion failed", error_type=ExtractionError)
    def _perform_llm_completion(
        self,
        messages: List[Dict[str, str]],
        response_model: Type[ResponseType],
        config: DictStrAny,
        step: ExtractionStep,
    ) -> ResponseType:
        """Perform LLM completion and track token usage"""
        # Use create_with_completion as shown in Instructor docs
        result, completion = self.client.chat.completions.create_with_completion(
            model=self.model_name,
            response_model=response_model,
            messages=messages,
            **config,
        )

        # Create usage object
        usage = StepUsage.from_completion(completion, step)

        # Add to usage tracking if available (thread-safe)
        if usage:
            with self.usage_lock:
                self.usage.add_step_usage(usage)
            logger.debug(f"Step {step.value}: {usage.total_tokens} tokens used")

        return result

    @handle_errors(error_message="Query refinement failed", error_type=ExtractionError)
    def _refine_query(self, query: str) -> QueryRefinement:
        """Refine and expand query with structural requirements"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": query_refinement_system_prompt},
                {
                    "role": "user",
                    "content": query_refinement_template.substitute(query=query),
                },
            ],
            response_model=QueryRefinement,
            config=self.config.refinement,
            step=ExtractionStep.REFINEMENT,
        )

    @handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
    def _generate_extraction_schema(
        self, sample_text: str, refined_query: QueryRefinement, guide: ExtractionGuide
    ) -> ExtractionRequest:
        """Generate schema with enforced structure"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": schema_system_prompt},
                {
                    "role": "user",
                    "content": schema_template.substitute(
                        refined_query=refined_query.refined_query,
                        data_characteristics=refined_query.data_characteristics,
                        structural_requirements=refined_query.structural_requirements,
                        organization_principles=guide.organization_principles,
                        sample_text=sample_text,
                    ),
                },
            ],
            response_model=ExtractionRequest,
            config=self.config.refinement,
            step=ExtractionStep.SCHEMA_GENERATION,
        )

    @handle_errors(error_message="Guide generation failed", error_type=ExtractionError)
    def _generate_extraction_guide(
        self, refined_query: QueryRefinement, data_columns: List[str]
    ) -> ExtractionGuide:
        """Generate extraction guide based on refined query"""

        return self._perform_llm_completion(
            messages=[
                {"role": "system", "content": guide_system_prompt},
                {
                    "role": "user",
                    "content": guide_template.substitute(
                        data_characteristics=refined_query.data_characteristics,
                        available_columns=data_columns,
                    ),
                },
            ],
            response_model=ExtractionGuide,
            config=self.config.refinement,
            step=ExtractionStep.GUIDE,
        )

    def _create_retry_decorator(self):
        """Create retry decorator with instance parameters"""
        return retry(
            stop=stop_after_attempt(self.max_retries),
            wait=wait_exponential(
                multiplier=self.min_wait, min=self.min_wait, max=self.max_wait
            ),
            retry=retry_if_exception_type(ExtractionError),
            before_sleep=before_sleep_log(logger, logging.DEBUG),
            after=after_log(logger, logging.DEBUG),
        )

    def _extract_with_model(
        self,
        text: str,
        extraction_model: Type[BaseModel],
        refined_query: QueryRefinement,
        guide: ExtractionGuide,
        is_custom_model: bool = False,
    ) -> List[BaseModel]:
        """Extract data with enforced structure with retries and usage tracking"""

        # Create a container model to wrap the list items
        # this is necessary to be able to track token usage, when passing an iterable data model
        # result._raw_response does not exist making usage calculations not possible
        container_name = f"{extraction_model.__name__}Container"
        container_model = create_model(
            container_name,
            __base__=BaseModel,
            items=(
                List[extraction_model],
                Field(description=f"List of {extraction_model.__name__} items"),
            ),
        )

        # Get model schema for custom models to help with extraction
        model_schema_info = ""
        if is_custom_model:
            model_schema = extraction_model.model_json_schema()
            # Include field descriptions to help with extraction
            for field, details in model_schema.get("properties", {}).items():
                field_type = details.get("type", "unknown")
                field_desc = details.get("description", "")
                if "enum" in details:
                    field_desc += (
                        f" Possible values: {', '.join(map(str, details['enum']))}"
                    )
                model_schema_info += f"- {field} ({field_type}): {field_desc}\n"

        # Apply retry decorator
        retry_decorator = self._create_retry_decorator()

        @retry_decorator
        def extract_with_retry() -> List[BaseModel]:
            # Prepare additional context for custom model extraction
            extra_context = ""
            if is_custom_model and model_schema_info:
                extra_context = f"\nModel fields and descriptions:\n{model_schema_info}\n\nEnsure all applicable fields are populated with relevant information from the text."

            # Use _perform_llm_completion with the container model
            container = self._perform_llm_completion(
                messages=[
                    {"role": "system", "content": extraction_system_prompt},
                    {
                        "role": "user",
                        "content": extraction_template.substitute(
                            query=refined_query.refined_query,
                            patterns=guide.structural_patterns,
                            rules=guide.relationship_rules + [extra_context],
                            text=text,
                        ),
                    },
                ],
                response_model=container_model,
                config=self.config.extraction,
                step=ExtractionStep.EXTRACTION,
            )

            # Return just the items
            return container.items

        # Execute with retry
        return extract_with_retry()

    @handle_errors(
        error_message="Failed to initialize extraction", error_type=ExtractionError
    )
    def _initialize_extraction(
        self, df: pd.DataFrame, query: str, generate_model: bool = True
    ) -> Tuple[
        QueryRefinement,
        ExtractionGuide,
        Optional[Type[BaseModel]],
    ]:
        """Initialize the extraction process by refining query and generating models if needed"""
        # Refine query
        refined_query = self._refine_query(query)
        logger.info(f"Refined Query: {refined_query.refined_query}")

        # Generate guide
        guide = self._generate_extraction_guide(refined_query, df.columns.tolist())
        logger.info(f"Target Columns: {guide.target_columns}")

        if not generate_model:
            return refined_query, guide

        # Get sample text for schema generation
        sample_text = df[guide.target_columns].iloc[0]

        # Generate model
        schema_request = self._generate_extraction_schema(
            sample_text, refined_query, guide
        )
        ExtractionModel = ModelGenerator.from_extraction_request(schema_request)
        logger.info("Generated Model Schema:")
        logger.info(json.dumps(ExtractionModel.model_json_schema(), indent=2))

        return refined_query, guide, ExtractionModel

    def _initialize_results(
        self, df: pd.DataFrame, extraction_model: Type[BaseModel]
    ) -> Tuple[pd.DataFrame, List[Any], List[Dict]]:
        """Initialize result containers"""
        result_df = df.copy()
        result_list = []
        failed_rows = []

        # Initialize extraction columns
        for field_name in extraction_model.model_fields:
            result_df[field_name] = None
        result_df["extraction_status"] = None

        return result_df, result_list, failed_rows

    def _create_extraction_worker(
        self,
        extraction_model: Type[BaseModel],
        refined_query: QueryRefinement,
        guide: ExtractionGuide,
        result_df: pd.DataFrame,
        result_list: List[Any],
        failed_rows: List[Dict],
        return_df: bool,
        expand_nested: bool,
        is_custom_model: bool = False,
    ):
        """Create a worker function for threaded extraction"""

        def extract_worker(
            row_text: str,
            row_idx: int,
            semaphore: threading.Semaphore,
            pbar: tqdm,
        ):
            with semaphore:
                try:
                    items = self._extract_with_model(
                        text=row_text,
                        extraction_model=extraction_model,
                        refined_query=refined_query,
                        guide=guide,
                        is_custom_model=is_custom_model,
                    )

                    if return_df:
                        self._update_dataframe(result_df, items, row_idx, expand_nested)
                    else:
                        result_list.extend(items)

                except Exception as e:
                    self._handle_extraction_error(
                        result_df, failed_rows, row_idx, row_text, e
                    )
                finally:
                    pbar.update(1)

        return extract_worker

    def _update_dataframe(
        self,
        result_df: pd.DataFrame,
        items: List[BaseModel],
        row_idx: int,
        expand_nested: bool,
    ) -> None:
        """Update DataFrame with extracted items"""
        for i, item in enumerate(items):
            # Flatten if needed
            item_data = (
                flatten_extracted_data(item.model_dump())
                if expand_nested
                else item.model_dump()
            )

            # For multiple items, append index to field names
            if i > 0:
                item_data = {f"{k}_{i}": v for k, v in item_data.items()}

            # Update result dataframe
            for field_name, value in item_data.items():
                result_df.at[row_idx, field_name] = value

        result_df.at[row_idx, "extraction_status"] = "Success"

    def _handle_extraction_error(
        self,
        result_df: pd.DataFrame,
        failed_rows: List[Dict],
        row_idx: int,
        row_text: str,
        error: Exception,
    ) -> None:
        """Handle and log extraction errors"""
        failed_rows.append(
            {
                "index": row_idx,
                "text": row_text,
                "error": str(error),
                "timestamp": datetime.now().isoformat(),
            }
        )
        result_df.at[row_idx, "extraction_status"] = f"Failed: {str(error)}"

    def _process_batch(
        self,
        batch: pd.DataFrame,
        worker_fn: Callable,
        target_columns: List[str],
    ) -> None:
        """Process a batch of data using threads"""
        semaphore = threading.Semaphore(self.max_threads)
        threads = []

        with tqdm(total=len(batch), desc=f"Processing batch", unit="row") as pbar:
            # Create and start threads for batch
            for idx, row in batch.iterrows():
                thread = threading.Thread(
                    target=worker_fn,
                    args=(row[target_columns].to_markdown(), idx, semaphore, pbar),
                )
                thread.start()
                threads.append(thread)

            # Wait for batch threads to complete
            for thread in threads:
                thread.join()

    def _log_extraction_stats(self, total_rows: int, failed_rows: List[Dict]) -> None:
        """Log extraction statistics"""
        success_count = total_rows - len(failed_rows)
        logger.info("\nExtraction Statistics:")
        logger.info(f"Total rows: {total_rows}")
        logger.info(
            f"Successfully processed: {success_count} "
            f"({success_count/total_rows*100:.2f}%)"
        )
        logger.info(
            f"Failed: {len(failed_rows)} " f"({len(failed_rows)/total_rows*100:.2f}%)"
        )

    @handle_errors(error_message="Data processing failed", error_type=ExtractionError)
    def _process_data(
        self,
        df: pd.DataFrame,
        query: str,
        return_df: bool,
        expand_nested: bool = False,
        extraction_model: Optional[Type[BaseModel]] = None,
    ) -> ExtractionResult:
        """Process DataFrame with extraction"""
        # Reset usage tracking
        self.usage = ExtractorUsage()

        # Initialize extraction
        if extraction_model:
            # When a custom model is provided, generate refinement and guide from the model
            # instead of from the query to avoid conflicts
            refined_query, guide = self._generate_from_model(
                model=extraction_model, query=query, data_columns=df.columns.tolist()
            )
            ExtractionModel = extraction_model
        else:
            refined_query, guide, ExtractionModel = self._initialize_extraction(
                df, query, generate_model=True
            )

        # Initialize results
        result_df, result_list, failed_rows = self._initialize_results(
            df, ExtractionModel
        )

        # Create worker function - pass is_custom_model flag when using a provided model
        worker_fn = self._create_extraction_worker(
            extraction_model=ExtractionModel,
            refined_query=refined_query,
            guide=guide,
            result_df=result_df,
            result_list=result_list,
            failed_rows=failed_rows,
            return_df=return_df,
            expand_nested=expand_nested,
            is_custom_model=extraction_model is not None,
        )

        # Process in batches
        for batch_start in range(0, len(df), self.batch_size):
            batch_end = min(batch_start + self.batch_size, len(df))
            batch = df.iloc[batch_start:batch_end]
            self._process_batch(batch, worker_fn, guide.target_columns)

        # Log statistics
        self._log_extraction_stats(len(df), failed_rows)

        # Create a deep copy of usage for the result
        result_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Return results
        return ExtractionResult(
            data=result_df if return_df else result_list,
            failed=pd.DataFrame(failed_rows),
            model=ExtractionModel,
            usage=result_usage,
        )

    def _prepare_data(
        self, data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]], **kwargs: Any
    ) -> pd.DataFrame:
        """
        Convert input data to DataFrame

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            **kwargs: Additional options for file reading

        Returns:
            DataFrame with data
        """
        if isinstance(data, pd.DataFrame):
            df = data
        elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
            df = pd.DataFrame(data)
        elif isinstance(data, (str, Path)) and Path(str(data)).exists():
            df = FileReader.read_file(data, **kwargs)
        elif isinstance(data, str):
            # Raw text
            chunk_size = kwargs.get("chunk_size", 1000)
            overlap = kwargs.get("overlap", 100)
            chunks = []
            for i in range(0, len(data), chunk_size - overlap):
                chunks.append(data[i : i + chunk_size])

            df = pd.DataFrame(
                {"text": chunks, "chunk_id": range(len(chunks)), "source": "raw_text"}
            )
        else:
            raise ValueError(f"Unsupported data type: {type(data)}")

        # Ensure text column exists
        if "text" not in df.columns and len(df.columns) == 1:
            df["text"] = df[df.columns[0]]

        return df

    async def _run_async(self, func: Callable, *args: Any, **kwargs: Any) -> Any:
        """
        Run a function asynchronously in a thread pool

        Args:
            func: Function to run
            *args: Positional arguments for the function
            **kwargs: Keyword arguments for the function

        Returns:
            Result of the function
        """
        # Use functools.partial to create a callable with all arguments
        from functools import partial

        wrapped_func = partial(func, *args, **kwargs)

        try:
            # Try to get the running loop
            loop = asyncio.get_running_loop()
        except RuntimeError:
            # No running loop, create a new one
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)

            # Since we created a new loop, we need to run and close it
            try:
                return await loop.run_in_executor(None, wrapped_func)
            finally:
                loop.close()
        else:
            # We got an existing loop, just use it
            return await loop.run_in_executor(None, wrapped_func)

    @handle_errors(error_message="Extraction failed", error_type=ExtractionError)
    def extract(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        query: str,
        model: Optional[Type[BaseModel]] = None,
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> ExtractionResult:
        """
        Extract structured data from text

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            query: Natural language query
            model: Optional pre-generated Pydantic model class (if None, a model will be generated)
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading
                - chunk_size: Size of text chunks (for unstructured text)
                - overlap: Overlap between chunks (for unstructured text)
                - encoding: Text encoding (for unstructured text)

        Returns:
            Extraction result with extracted data, failed rows, and model (if requested)
        """
        df = self._prepare_data(data, **kwargs)
        return self._process_data(df, query, return_df, expand_nested, model)

    async def extract_async(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        query: str,
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> ExtractionResult:
        """
        Asynchronous version of `extract`.

        Extract structured data from text

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            query: Natural language query
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading

        Returns:
            ExtractionResult containing extracted data, failed rows, and the model
        """

    @handle_errors(error_message="Batch extraction failed", error_type=ExtractionError)
    def extract_queries(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        queries: List[str],
        return_df: bool = True,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> Dict[str, ExtractionResult]:
        """
        Process multiple queries on the same data

        Args:
            data: Input data (file path, DataFrame, list of dicts, or raw text)
            queries: List of queries to process
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options for file reading
                - chunk_size: Size of text chunks (for unstructured text)
                - overlap: Overlap between chunks (for unstructured text)
                - encoding: Text encoding (for unstructured text)

        Returns:
            Dictionary mapping queries to their results (extracted data and failed extractions)
        """
        results = {}

        for query in queries:
            logger.info(f"\nProcessing query: {query}")
            result = self.extract(
                data=data,
                query=query,
                return_df=return_df,
                expand_nested=expand_nested,
                **kwargs,
            )
            results[query] = result

        return results

    async def extract_queries_async(
        self,
        data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
        queries: List[str],
        return_df: bool = False,
        expand_nested: bool = False,
        **kwargs: Any,
    ) -> Dict[str, ExtractionResult]:
        """
        Asynchronous version of `extract_queries`.

        Extract structured data using multiple queries

        Args:
            data: Input data
            queries: List of queries
            return_df: Whether to return DataFrame
            expand_nested: Whether to flatten nested structures
            **kwargs: Additional options

        Returns:
            Dictionary mapping queries to ExtractionResult objects
        """

    @handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
    def get_schema(self, query: str, sample_text: str) -> Type[BaseModel]:
        """
        Get extraction model without performing extraction

        Args:
            query: Natural language query
            sample_text: Sample text for context

        Returns:
            Pydantic model for extraction with `.usage` attribute for token tracking
        """
        # Refine query
        refined_query = self._refine_query(query)

        # Create a simple list of column names from the sample text
        # Since we're not working with a DataFrame here, we'll assume a single column
        columns = ["text"]

        # Generate guide
        guide = self._generate_extraction_guide(refined_query, columns)

        # Generate schema
        schema_request = self._generate_extraction_schema(
            sample_text, refined_query, guide
        )

        # Create model
        ExtractionModel = ModelGenerator.from_extraction_request(schema_request)

        # Create a deep copy of usage for the model
        model_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Add usage to model
        ExtractionModel.usage = model_usage

        return ExtractionModel

    async def get_schema_async(self, query: str, sample_text: str) -> Type[BaseModel]:
        """
        Asynchronous version of `get_schema`.

        Get the dynamically generated model for extraction

        Args:
            query: Natural language query
            sample_text: Sample text for context

        Returns:
            Dynamically generated Pydantic model class
        """

    def refine_data_model(
        self,
        model: Type[BaseModel],
        instructions: str,
        model_name: Optional[str] = None,
    ) -> Type[BaseModel]:
        """
        Refine an existing data model based on natural language instructions

        Args:
            model: Existing Pydantic model to refine
            instructions: Natural language instructions for refinement
            model_name: Optional name for the refined model (defaults to original name with 'Refined' prefix)

        Returns:
            A new refined Pydantic model with `.usage` attribute for token tracking
        """

        # Default model name if not provided
        if model_name is None:
            model_name = f"Refined{model.__name__}"

        # Get the schema of the existing model
        model_schema = model.model_json_schema()
        model_schema_str = json.dumps(model_schema, indent=2)

        # Generate schema for the refined model directly
        extraction_request = self._perform_llm_completion(
            response_model=ExtractionRequest,
            messages=[
                {
                    "role": "system",
                    "content": """You are a data model refinement specialist.
                Analyze the existing model and the refinement instructions to create
                a new model that incorporates the requested changes.""",
                },
                {
                    "role": "user",
                    "content": f"""
                Refine the following data model according to these instructions:

                EXISTING MODEL SCHEMA:
                ```json
                {model_schema_str}
                ```
            REFINEMENT INSTRUCTIONS:
            {instructions}

            Create a new model schema that:
            1. Keeps fields from the original model that shouldn't change
            2. Modifies fields as specified in the instructions
            3. Adds new fields as specified in the instructions
            4. Removes fields as specified in the instructions

            Important: Use Pydantic v2 syntax:
            - Use `pattern` instead of `regex` for string patterns
            - Use `model_config` instead of `Config` class
            - Use `Field` with validation parameters instead of validators where possible

            Include a clear description of the model and each field.
        """,
                },
            ],
            config=self.config.refinement,
            step=ExtractionStep.SCHEMA_GENERATION,
        )

        # Set the model name if specified
        if model_name:
            extraction_request.model_name = model_name

        # Sanitize regex patterns to prevent validation errors
        sanitized_request = sanitize_regex_patterns(extraction_request)

        # Convert from v1 to v2 if needed and generate model
        converted_request = convert_pydantic_v1_to_v2(sanitized_request)
        refined_model = ModelGenerator.from_extraction_request(converted_request)

        # Create a deep copy of usage for the model
        model_usage = copy.deepcopy(self.usage) if self.usage else None

        # Reset the extractor's usage for the next operation
        self.usage = ExtractorUsage()

        # Add usage to model
        refined_model.usage = model_usage

        return refined_model

    def _generate_from_model(
        self,
        model: Type[BaseModel],
        query: str,
        data_columns: List[str],
    ) -> Tuple[QueryRefinement, ExtractionGuide]:
        """Generate refinement and guide from a provided model

        When a custom model is provided, we reverse engineer the refinement and guide
        to match the model structure, rather than generating them from the query.

        Args:
            model: The provided custom model
            query: The original query (used as context)
            data_columns: Available columns in the dataset

        Returns:
            Tuple of refined_query and extraction_guide
        """
        # Get model schema
        model_schema = model.model_json_schema()

        # Create refined query to match the model
        model_description = (
            model_schema.get("description", "")
            or model_schema.get("title", "")
            or model.__name__
        )
        model_properties = model_schema.get("properties", {})

        # Extract data characteristics from the model properties
        data_characteristics = []
        field_descriptions = {}
        for prop_name, prop_info in model_properties.items():
            prop_description = prop_info.get("description", "")
            prop_type = prop_info.get("type", "")
            enum_values = prop_info.get("enum", [])

            # Store field descriptions for column mapping
            field_descriptions[prop_name] = {
                "description": prop_description,
                "type": prop_type,
                "enum": enum_values,
            }

            # Build detailed characteristics
            if prop_description:
                if enum_values:
                    data_characteristics.append(
                        f"{prop_name} ({prop_type}): {prop_description}. Possible values: {', '.join(map(str, enum_values))}"
                    )
                else:
                    data_characteristics.append(
                        f"{prop_name} ({prop_type}): {prop_description}"
                    )
            else:
                data_characteristics.append(f"{prop_name} ({prop_type})")

        # Extract structure requirements
        structural_requirements = {}
        for prop_name, prop_info in model_properties.items():
            if "type" in prop_info:
                structural_requirements[prop_name] = prop_info["type"]

        # Create a simplified query refinement with explicit field mapping instructions
        model_fields = list(model_properties.keys())
        refined_query = QueryRefinement(
            refined_query=f"Extract {model_description} as specified in the provided model, filling all fields with relevant data from the appropriate columns. Original query: {query}",
            data_characteristics=data_characteristics,
            structural_requirements=structural_requirements,
        )

        # Create custom field-to-column mapping suggestions based on field names and data columns
        # This helps guide the column selection for extraction
        column_suggestions = self._suggest_column_mappings(
            model_properties, data_columns, field_descriptions
        )

        # Generate guide with enhanced column mapping
        guide_messages = [
            {"role": "system", "content": guide_system_prompt},
            {
                "role": "user",
                "content": custom_model_guide_template.substitute(
                    data_characteristics=data_characteristics,
                    available_columns=data_columns,
                    model_fields=model_fields,
                    column_suggestions=json.dumps(column_suggestions, indent=2),
                ),
            },
        ]

        guide = self._perform_llm_completion(
            messages=guide_messages,
            response_model=ExtractionGuide,
            config=self.config.refinement,
            step=ExtractionStep.GUIDE,
        )

        logger.info(f"Extraction Columns: {guide.target_columns}")
        logger.info(
            f"Generated refinement and guide from custom model: {model.__name__}"
        )

        return refined_query, guide

    def _suggest_column_mappings(
        self,
        model_properties: Dict[str, Any],
        data_columns: List[str],
        field_descriptions: Dict[str, Dict[str, Any]],
    ) -> Dict[str, List[str]]:
        """Create intelligent mapping suggestions between model fields and data columns

        Args:
            model_properties: Properties from the model schema
            data_columns: Available column names in the dataset
            field_descriptions: Descriptions and types for model fields

        Returns:
            Dictionary mapping model field names to potential column names
        """
        mapping_suggestions = {}

        for field_name in model_properties.keys():
            potential_columns = []

            # Find columns that might match this field based on name similarity
            field_terms = set(field_name.lower().replace("_", " ").split())
            field_description = (
                field_descriptions.get(field_name, {}).get("description", "").lower()
            )
            field_desc_terms = set(
                field_description.replace(",", " ").replace(".", " ").split()
            )

            for column in data_columns:
                col_terms = set(column.lower().replace("_", " ").split())

                # Check for direct matches or substring matches
                if (
                    field_name.lower() in column.lower()
                    or column.lower() in field_name.lower()
                    or any(term in column.lower() for term in field_terms)
                    or any(term in column.lower() for term in field_desc_terms)
                ):
                    potential_columns.append(column)

            # If no matches found through name/description similarity, suggest all columns
            # as the field might be extracted from any text column
            if not potential_columns:
                # Add text columns or if not found, just add all columns
                text_columns = [
                    col
                    for col in data_columns
                    if "text" in col.lower() or "description" in col.lower()
                ]
                potential_columns = text_columns if text_columns else data_columns

            mapping_suggestions[field_name] = potential_columns

        return mapping_suggestions

    @classmethod
    def from_litellm(
        cls,
        model: str,
        api_key: Optional[str] = None,
        config: Optional[Union[Dict, str]] = None,
        max_threads: int = 10,
        batch_size: int = 100,
        max_retries: int = 3,
        min_wait: int = 1,
        max_wait: int = 10,
        **litellm_kwargs: Any,
    ) -> "Extractor":
        """
        Create Extractor instance using litellm

        Args:
            model: Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")
            api_key: API key for the model provider
            config: Extraction configuration
            max_threads: Maximum number of concurrent threads
            batch_size: Size of processing batches
            max_retries: Maximum number of retries for extraction
            min_wait: Minimum seconds to wait between retries
            max_wait: Maximum seconds to wait between retries
            **litellm_kwargs: Additional kwargs for litellm (e.g., api_base, organization)
        """
        import instructor
        import litellm
        from litellm import completion

        # Set up litellm
        if api_key:
            litellm.api_key = api_key

        # Set additional litellm configs
        for key, value in litellm_kwargs.items():
            setattr(litellm, key, value)

        # Create patched client
        client = instructor.from_litellm(completion)

        return cls(
            client=client,
            model_name=model,
            config=config,
            max_threads=max_threads,
            batch_size=batch_size,
            max_retries=max_retries,
            min_wait=min_wait,
            max_wait=max_wait,
        )

extract(data, query, model=None, return_df=False, expand_nested=False, **kwargs)

Extract structured data from text

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
query str

Natural language query

required
model Optional[Type[BaseModel]]

Optional pre-generated Pydantic model class (if None, a model will be generated)

None
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading - chunk_size: Size of text chunks (for unstructured text) - overlap: Overlap between chunks (for unstructured text) - encoding: Text encoding (for unstructured text)

{}

Returns:

Type Description
ExtractionResult

Extraction result with extracted data, failed rows, and model (if requested)

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Extraction failed", error_type=ExtractionError)
def extract(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    query: str,
    model: Optional[Type[BaseModel]] = None,
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> ExtractionResult:
    """
    Extract structured data from text

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        query: Natural language query
        model: Optional pre-generated Pydantic model class (if None, a model will be generated)
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading
            - chunk_size: Size of text chunks (for unstructured text)
            - overlap: Overlap between chunks (for unstructured text)
            - encoding: Text encoding (for unstructured text)

    Returns:
        Extraction result with extracted data, failed rows, and model (if requested)
    """
    df = self._prepare_data(data, **kwargs)
    return self._process_data(df, query, return_df, expand_nested, model)

extract_async(data, query, return_df=False, expand_nested=False, **kwargs) async

Asynchronous version of extract.

Extract structured data from text

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
query str

Natural language query

required
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading

{}

Returns:

Type Description
ExtractionResult

ExtractionResult containing extracted data, failed rows, and the model

Source code in structx/extraction/extractor.py
async def extract_async(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    query: str,
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> ExtractionResult:
    """
    Asynchronous version of `extract`.

    Extract structured data from text

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        query: Natural language query
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading

    Returns:
        ExtractionResult containing extracted data, failed rows, and the model
    """

extract_queries(data, queries, return_df=True, expand_nested=False, **kwargs)

Process multiple queries on the same data

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data (file path, DataFrame, list of dicts, or raw text)

required
queries List[str]

List of queries to process

required
return_df bool

Whether to return DataFrame

True
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options for file reading - chunk_size: Size of text chunks (for unstructured text) - overlap: Overlap between chunks (for unstructured text) - encoding: Text encoding (for unstructured text)

{}

Returns:

Type Description
Dict[str, ExtractionResult]

Dictionary mapping queries to their results (extracted data and failed extractions)

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Batch extraction failed", error_type=ExtractionError)
def extract_queries(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    queries: List[str],
    return_df: bool = True,
    expand_nested: bool = False,
    **kwargs: Any,
) -> Dict[str, ExtractionResult]:
    """
    Process multiple queries on the same data

    Args:
        data: Input data (file path, DataFrame, list of dicts, or raw text)
        queries: List of queries to process
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options for file reading
            - chunk_size: Size of text chunks (for unstructured text)
            - overlap: Overlap between chunks (for unstructured text)
            - encoding: Text encoding (for unstructured text)

    Returns:
        Dictionary mapping queries to their results (extracted data and failed extractions)
    """
    results = {}

    for query in queries:
        logger.info(f"\nProcessing query: {query}")
        result = self.extract(
            data=data,
            query=query,
            return_df=return_df,
            expand_nested=expand_nested,
            **kwargs,
        )
        results[query] = result

    return results

extract_queries_async(data, queries, return_df=False, expand_nested=False, **kwargs) async

Asynchronous version of extract_queries.

Extract structured data using multiple queries

Parameters:

Name Type Description Default
data Union[str, Path, DataFrame, List[Dict[str, str]]]

Input data

required
queries List[str]

List of queries

required
return_df bool

Whether to return DataFrame

False
expand_nested bool

Whether to flatten nested structures

False
**kwargs Any

Additional options

{}

Returns:

Type Description
Dict[str, ExtractionResult]

Dictionary mapping queries to ExtractionResult objects

Source code in structx/extraction/extractor.py
async def extract_queries_async(
    self,
    data: Union[str, Path, pd.DataFrame, List[Dict[str, str]]],
    queries: List[str],
    return_df: bool = False,
    expand_nested: bool = False,
    **kwargs: Any,
) -> Dict[str, ExtractionResult]:
    """
    Asynchronous version of `extract_queries`.

    Extract structured data using multiple queries

    Args:
        data: Input data
        queries: List of queries
        return_df: Whether to return DataFrame
        expand_nested: Whether to flatten nested structures
        **kwargs: Additional options

    Returns:
        Dictionary mapping queries to ExtractionResult objects
    """

from_litellm(model, api_key=None, config=None, max_threads=10, batch_size=100, max_retries=3, min_wait=1, max_wait=10, **litellm_kwargs) classmethod

Create Extractor instance using litellm

Parameters:

Name Type Description Default
model str

Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")

required
api_key Optional[str]

API key for the model provider

None
config Optional[Union[Dict, str]]

Extraction configuration

None
max_threads int

Maximum number of concurrent threads

10
batch_size int

Size of processing batches

100
max_retries int

Maximum number of retries for extraction

3
min_wait int

Minimum seconds to wait between retries

1
max_wait int

Maximum seconds to wait between retries

10
**litellm_kwargs Any

Additional kwargs for litellm (e.g., api_base, organization)

{}
Source code in structx/extraction/extractor.py
@classmethod
def from_litellm(
    cls,
    model: str,
    api_key: Optional[str] = None,
    config: Optional[Union[Dict, str]] = None,
    max_threads: int = 10,
    batch_size: int = 100,
    max_retries: int = 3,
    min_wait: int = 1,
    max_wait: int = 10,
    **litellm_kwargs: Any,
) -> "Extractor":
    """
    Create Extractor instance using litellm

    Args:
        model: Model identifier (e.g., "gpt-4", "claude-2", "azure/gpt-4")
        api_key: API key for the model provider
        config: Extraction configuration
        max_threads: Maximum number of concurrent threads
        batch_size: Size of processing batches
        max_retries: Maximum number of retries for extraction
        min_wait: Minimum seconds to wait between retries
        max_wait: Maximum seconds to wait between retries
        **litellm_kwargs: Additional kwargs for litellm (e.g., api_base, organization)
    """
    import instructor
    import litellm
    from litellm import completion

    # Set up litellm
    if api_key:
        litellm.api_key = api_key

    # Set additional litellm configs
    for key, value in litellm_kwargs.items():
        setattr(litellm, key, value)

    # Create patched client
    client = instructor.from_litellm(completion)

    return cls(
        client=client,
        model_name=model,
        config=config,
        max_threads=max_threads,
        batch_size=batch_size,
        max_retries=max_retries,
        min_wait=min_wait,
        max_wait=max_wait,
    )

get_schema(query, sample_text)

Get extraction model without performing extraction

Parameters:

Name Type Description Default
query str

Natural language query

required
sample_text str

Sample text for context

required

Returns:

Type Description
Type[BaseModel]

Pydantic model for extraction with .usage attribute for token tracking

Source code in structx/extraction/extractor.py
@handle_errors(error_message="Schema generation failed", error_type=ExtractionError)
def get_schema(self, query: str, sample_text: str) -> Type[BaseModel]:
    """
    Get extraction model without performing extraction

    Args:
        query: Natural language query
        sample_text: Sample text for context

    Returns:
        Pydantic model for extraction with `.usage` attribute for token tracking
    """
    # Refine query
    refined_query = self._refine_query(query)

    # Create a simple list of column names from the sample text
    # Since we're not working with a DataFrame here, we'll assume a single column
    columns = ["text"]

    # Generate guide
    guide = self._generate_extraction_guide(refined_query, columns)

    # Generate schema
    schema_request = self._generate_extraction_schema(
        sample_text, refined_query, guide
    )

    # Create model
    ExtractionModel = ModelGenerator.from_extraction_request(schema_request)

    # Create a deep copy of usage for the model
    model_usage = copy.deepcopy(self.usage) if self.usage else None

    # Reset the extractor's usage for the next operation
    self.usage = ExtractorUsage()

    # Add usage to model
    ExtractionModel.usage = model_usage

    return ExtractionModel

get_schema_async(query, sample_text) async

Asynchronous version of get_schema.

Get the dynamically generated model for extraction

Parameters:

Name Type Description Default
query str

Natural language query

required
sample_text str

Sample text for context

required

Returns:

Type Description
Type[BaseModel]

Dynamically generated Pydantic model class

Source code in structx/extraction/extractor.py
async def get_schema_async(self, query: str, sample_text: str) -> Type[BaseModel]:
    """
    Asynchronous version of `get_schema`.

    Get the dynamically generated model for extraction

    Args:
        query: Natural language query
        sample_text: Sample text for context

    Returns:
        Dynamically generated Pydantic model class
    """

refine_data_model(model, instructions, model_name=None)

Refine an existing data model based on natural language instructions

Parameters:

Name Type Description Default
model Type[BaseModel]

Existing Pydantic model to refine

required
instructions str

Natural language instructions for refinement

required
model_name Optional[str]

Optional name for the refined model (defaults to original name with 'Refined' prefix)

None

Returns:

Type Description
Type[BaseModel]

A new refined Pydantic model with .usage attribute for token tracking

Source code in structx/extraction/extractor.py
def refine_data_model(
    self,
    model: Type[BaseModel],
    instructions: str,
    model_name: Optional[str] = None,
) -> Type[BaseModel]:
    """
    Refine an existing data model based on natural language instructions

    Args:
        model: Existing Pydantic model to refine
        instructions: Natural language instructions for refinement
        model_name: Optional name for the refined model (defaults to original name with 'Refined' prefix)

    Returns:
        A new refined Pydantic model with `.usage` attribute for token tracking
    """

    # Default model name if not provided
    if model_name is None:
        model_name = f"Refined{model.__name__}"

    # Get the schema of the existing model
    model_schema = model.model_json_schema()
    model_schema_str = json.dumps(model_schema, indent=2)

    # Generate schema for the refined model directly
    extraction_request = self._perform_llm_completion(
        response_model=ExtractionRequest,
        messages=[
            {
                "role": "system",
                "content": """You are a data model refinement specialist.
            Analyze the existing model and the refinement instructions to create
            a new model that incorporates the requested changes.""",
            },
            {
                "role": "user",
                "content": f"""
            Refine the following data model according to these instructions:

            EXISTING MODEL SCHEMA:
            ```json
            {model_schema_str}
            ```
        REFINEMENT INSTRUCTIONS:
        {instructions}

        Create a new model schema that:
        1. Keeps fields from the original model that shouldn't change
        2. Modifies fields as specified in the instructions
        3. Adds new fields as specified in the instructions
        4. Removes fields as specified in the instructions

        Important: Use Pydantic v2 syntax:
        - Use `pattern` instead of `regex` for string patterns
        - Use `model_config` instead of `Config` class
        - Use `Field` with validation parameters instead of validators where possible

        Include a clear description of the model and each field.
    """,
            },
        ],
        config=self.config.refinement,
        step=ExtractionStep.SCHEMA_GENERATION,
    )

    # Set the model name if specified
    if model_name:
        extraction_request.model_name = model_name

    # Sanitize regex patterns to prevent validation errors
    sanitized_request = sanitize_regex_patterns(extraction_request)

    # Convert from v1 to v2 if needed and generate model
    converted_request = convert_pydantic_v1_to_v2(sanitized_request)
    refined_model = ModelGenerator.from_extraction_request(converted_request)

    # Create a deep copy of usage for the model
    model_usage = copy.deepcopy(self.usage) if self.usage else None

    # Reset the extractor's usage for the next operation
    self.usage = ExtractorUsage()

    # Add usage to model
    refined_model.usage = model_usage

    return refined_model